论文标题

流动流:基于物理信息的基于流动的生成对抗网络,用于不确定性量化

TrafficFlowGAN: Physics-informed Flow based Generative Adversarial Network for Uncertainty Quantification

论文作者

Mo, Zhaobin, Fu, Yongjie, Xu, Daran, Di, Xuan

论文摘要

本文提出了动态系统的不确定性量化(UQ)的基于物理学的生成对抗网络(GAN)的流动流。流动流采用标准化流模型作为发电机,以明确估计数据的可能性。对该流模型进行了训练,以最大程度地提高数据可能性并生成可以欺骗卷积歧视者的合成数据。我们使用先前的物理信息(所谓的物理学深度学习(PIDL))进一步正规化了这一培训过程。据我们所知,我们是第一个为UQ问题提供流动,GAN和PIDL的集成的人。我们采用交通状态估计(TSE),旨在使用部分观察到的数据来估算流量变量(例如,交通密度和速度),以证明我们提出的模型的性能。我们进行数值实验,其中应用所提出的模型来学习随机微分方程的解决方案。结果证明了所提出的模型的鲁棒性和准确性,以及学习机器学习替代模型的能力。我们还在现实世界中的下一代模拟(NGSIM)上对其进行了测试,以表明所提出的交通流gan可以胜过基线,包括纯流程模型,物理知识的流量模型和基于流量的GAN模型。

This paper proposes the TrafficFlowGAN, a physics-informed flow based generative adversarial network (GAN), for uncertainty quantification (UQ) of dynamical systems. TrafficFlowGAN adopts a normalizing flow model as the generator to explicitly estimate the data likelihood. This flow model is trained to maximize the data likelihood and to generate synthetic data that can fool a convolutional discriminator. We further regularize this training process using prior physics information, so-called physics-informed deep learning (PIDL). To the best of our knowledge, we are the first to propose an integration of flow, GAN and PIDL for the UQ problems. We take the traffic state estimation (TSE), which aims to estimate the traffic variables (e.g. traffic density and velocity) using partially observed data, as an example to demonstrate the performance of our proposed model. We conduct numerical experiments where the proposed model is applied to learn the solutions of stochastic differential equations. The results demonstrate the robustness and accuracy of the proposed model, together with the ability to learn a machine learning surrogate model. We also test it on a real-world dataset, the Next Generation SIMulation (NGSIM), to show that the proposed TrafficFlowGAN can outperform the baselines, including the pure flow model, the physics-informed flow model, and the flow based GAN model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源