论文标题

强大的模仿学习环境动态的变化

Robust Imitation Learning against Variations in Environment Dynamics

论文作者

Chae, Jongseong, Han, Seungyul, Jung, Whiyoung, Cho, Myungsik, Choi, Sungho, Sung, Youngchul

论文摘要

在本文中,我们提出了一个健壮的模仿学习(IL)框架,该框架在扰动环境动态时改善了IL的鲁棒性。在单个环境中训练的现有IL框架可能会因环境动力学的扰动而灾难性地失败,因为它无法捕获可以更改潜在环境动态的情况。我们的框架有效地处理了具有不同动态的环境,通过模仿了采样环境动力学中的多个专家,以增强环境动力学一般变化的鲁棒性。为了强力模仿多个样本专家,我们将代理商政策与每个样本专家之间的Jensen-Shannon分歧降低了风险。数值结果表明,与常规IL基准相比,我们的算法显着提高了针对动态扰动的鲁棒性。

In this paper, we propose a robust imitation learning (IL) framework that improves the robustness of IL when environment dynamics are perturbed. The existing IL framework trained in a single environment can catastrophically fail with perturbations in environment dynamics because it does not capture the situation that underlying environment dynamics can be changed. Our framework effectively deals with environments with varying dynamics by imitating multiple experts in sampled environment dynamics to enhance the robustness in general variations in environment dynamics. In order to robustly imitate the multiple sample experts, we minimize the risk with respect to the Jensen-Shannon divergence between the agent's policy and each of the sample experts. Numerical results show that our algorithm significantly improves robustness against dynamics perturbations compared to conventional IL baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源