论文标题
TBRAT:可信赖的脑肿瘤分割
TBraTS: Trusted Brain Tumor Segmentation
论文作者
论文摘要
尽管最近提高了脑肿瘤分割的准确性,但结果仍然表现出较低的置信度和鲁棒性。不确定性估计是改变这种情况的一种有效方法,因为它提供了对分割结果的信心。在本文中,我们提出了一个可信赖的脑肿瘤分割网络,该网络可以产生可靠的分割结果和可靠的不确定性估计,而不会过多的计算负担和骨干网络的修改。在我们的方法中,不确定性是使用主观逻辑理论明确建模的,该理论将主干神经网络的预测视为主观意见,通过将分割的类概率作为差异分布进行参数。同时,受信任的分割框架学习了从功能中收集可靠证据的功能,从而导致最终分割结果。总体而言,我们统一的可信赖分割框架使该模型具有可靠性和稳健性,对分布样本。为了评估我们的模型在鲁棒性和可靠性方面的有效性,在Brats 2019数据集中进行了定性和定量实验。
Despite recent improvements in the accuracy of brain tumor segmentation, the results still exhibit low levels of confidence and robustness. Uncertainty estimation is one effective way to change this situation, as it provides a measure of confidence in the segmentation results. In this paper, we propose a trusted brain tumor segmentation network which can generate robust segmentation results and reliable uncertainty estimations without excessive computational burden and modification of the backbone network. In our method, uncertainty is modeled explicitly using subjective logic theory, which treats the predictions of backbone neural network as subjective opinions by parameterizing the class probabilities of the segmentation as a Dirichlet distribution. Meanwhile, the trusted segmentation framework learns the function that gathers reliable evidence from the feature leading to the final segmentation results. Overall, our unified trusted segmentation framework endows the model with reliability and robustness to out-of-distribution samples. To evaluate the effectiveness of our model in robustness and reliability, qualitative and quantitative experiments are conducted on the BraTS 2019 dataset.