论文标题

渐近的欧几里得Ricci流动的旋转能量

The spinorial energy for asymptotically Euclidean Ricci flow

论文作者

Baldauf, Julius, Ozuch, Tristan

论文摘要

本文介绍了Perelman的加权Hilbert-Einstein动作和旋转器的Dirichlet Energy的功能性推广。它在一系列的非紧密歧管上定义明确。在渐近的欧几里得歧管上,该功能被证明可以接收一个独特的临界点,该点必须具有最小最大的类型,而RICCI流量是其梯度流。该证明基于加权旋转功能的变异公式,对所有带边界的旋转歧管有效。

This paper introduces a functional generalizing Perelman's weighted Hilbert-Einstein action and the Dirichlet energy for spinors. It is well-defined on a wide class of non-compact manifolds; on asymptotically Euclidean manifolds, the functional is shown to admit a unique critical point, which is necessarily of min-max type, and Ricci flow is its gradient flow. The proof is based on variational formulas for weighted spinorial functionals, valid on all spin manifolds with boundary.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源