论文标题

从标量信号中推断振荡器的相位和振幅响应,利用测试刺激

Inferring oscillator's phase and amplitude response from a scalar signal exploiting test stimulation

论文作者

Cestnik, Rok, Mau, Erik T. K., Rosenblum, Michael

论文摘要

相灵敏度曲线或相位响应曲线(PRC)量化了振荡器对特定相位刺激的反应,并且是自我维持的振荡单元的主要特征。该曲线的知识产生了对任意弱强迫的振荡器的相动态描述。类似的幅度响应可以使用幅度估计或通过同等变量来定义的幅度响应,尽管研究的特征较少,但幅度响应类似。在这里,我们讨论了使用测试刺激的观测值的相位和振幅响应推断的问题。尽管PRC确定狭窄脉冲扰动的无噪声神经元样振荡器是一项众所周知的任务,但总体情况仍然是一个具有挑战性的问题。更具挑战性的是振幅响应的推断。这种特征至关重要,例如,在交互单位网络中控制集体模式的幅度 - 与神经科学相关的任务。在这里,我们比较适合推断相位和振幅响应的不同技术的性能,尤其是在宏观振荡器中应用。我们建议对这些技术进行改进,例如,在有任意形状的刺激下演示如何获得PRC。我们的主要结果是一种新型技术,该技术由IPID-1表示,基于Winfree方程的直接重建以及等速动力学的类似一阶方程。该技术适用于有或没有发音良好的标记事件和任意形状的脉冲的信号;特别是,我们考虑了神经科学应用中典型的电荷平衡脉冲。此外,对于嘈杂和高维系统,该技术是优越的。此外,我们描述了一个误差度量,该误差度量可以仅从数据中计算出来并补充任何推理技术。

The phase sensitivity curve or phase response curve (PRC) quantifies the oscillator's reaction to stimulation at a specific phase and is a primary characteristic of a self-sustained oscillatory unit. Knowledge of this curve yields a phase dynamics description of the oscillator for arbitrary weak forcing. Similar, though much less studied characteristic, is the amplitude response that can be defined either using an ad hoc approach to amplitude estimation or via the isostable variables. Here, we discuss the problem of the phase and amplitude response inference from observations using test stimulation. Although PRC determination for noise-free neuronal-like oscillators perturbed by narrow pulses is a well-known task, the general case remains a challenging problem. Even more challenging is the inference of the amplitude response. This characteristic is crucial, e.g., for controlling the amplitude of the collective mode in a network of interacting units -- a task relevant to neuroscience. Here, we compare the performance of different techniques suitable for inferring the phase and amplitude response, particularly with application to macroscopic oscillators. We suggest improvements to these techniques, e.g., demonstrating how to obtain the PRC in case of stimuli of arbitrary shape. Our main result is a novel technique denoted by IPID-1, based on the direct reconstruction of the Winfree equation and the analogous first-order equation for isostable dynamics. The technique works for signals with or without well-pronounced marker events and pulses of arbitrary shape; in particular, we consider charge-balanced pulses typical in neuroscience applications. Moreover, this technique is superior for noisy and high-dimensional systems. Additionally, we describe an error measure that can be computed solely from data and complements any inference technique.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源