论文标题

对抗团队游戏与2个玩家游戏之间的婚姻:启用抽象,无需学习和求解子游戏

A Marriage between Adversarial Team Games and 2-player Games: Enabling Abstractions, No-regret Learning, and Subgame Solving

论文作者

Carminati, Luca, Cacciamani, Federico, Ciccone, Marco, Gatti, Nicola

论文摘要

\ emph {ex ante}相关性正在成为\ emph {顺序对抗团队游戏}的主流方法,其中一组球员在零和游戏中面对另一支球队。众所周知,团队成员的不对称信息同时使平衡计算\ textsf {apx} - hard和团队的策略在游戏树上不可直接表示。后一个问题阻止采用成功的2个玩家零和游戏的成功工具,例如,\ emph {e.g。},抽象,无需重新学习和子游戏求解。这项工作表明,我们可以通过弥合顺序对手团队游戏和2次玩家游戏之间的差距来恢复这种弱点。特别是,我们提出了一种新的,合适的游戏表示形式,我们称之为\ emph {Team-Public-information},其中团队被表示为单个协调员,该协调员只知道整个团队共有的信息,并向每个成员开出任何可能的私人状态的行动。由此产生的表示形式是高度\ emph {可解释},是一棵2播放器树,在设计抽象时,团队的策略是具有直接解释的行为,具有直接的解释,并且比原始的广泛形式更具表现力。此外,我们证明了代表性的回报等效性,并提供了直接从广泛形式开始的技术,在没有信息损失的情况下产生了更紧凑的表示形式。最后,当应用于标准测试床时,我们对其技术进行了实验评估,将它们的性能与当前最新技术进行了比较。

\emph{Ex ante} correlation is becoming the mainstream approach for \emph{sequential adversarial team games}, where a team of players faces another team in a zero-sum game. It is known that team members' asymmetric information makes both equilibrium computation \textsf{APX}-hard and team's strategies not directly representable on the game tree. This latter issue prevents the adoption of successful tools for huge 2-player zero-sum games such as, \emph{e.g.}, abstractions, no-regret learning, and subgame solving. This work shows that we can recover from this weakness by bridging the gap between sequential adversarial team games and 2-player games. In particular, we propose a new, suitable game representation that we call \emph{team-public-information}, in which a team is represented as a single coordinator who only knows information common to the whole team and prescribes to each member an action for any possible private state. The resulting representation is highly \emph{explainable}, being a 2-player tree in which the team's strategies are behavioral with a direct interpretation and more expressive than the original extensive form when designing abstractions. Furthermore, we prove payoff equivalence of our representation, and we provide techniques that, starting directly from the extensive form, generate dramatically more compact representations without information loss. Finally, we experimentally evaluate our techniques when applied to a standard testbed, comparing their performance with the current state of the art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源