论文标题
暂时行动检测的上下文感知建议网络
Context-aware Proposal Network for Temporal Action Detection
论文作者
论文摘要
该技术报告介绍了我们在CVPR-2022 AcitivityNet Challenge中为时间动作检测任务的第一名获胜解决方案。该任务旨在将行动实例的时间边界与长期未经修剪的视频中的特定类别进行定位。最近的主流尝试基于密集的边界匹配,并列举所有可能的组合以产生建议。我们认为,生成的提案包含丰富的上下文信息,这可能会受益于检测信心预测。为此,我们的方法主要包括以下三个步骤:1)慢速,CSN,TimesFormer,TSP,i3d-Flow,i3d-flow,vggish-audio,tpn和vivit进行动作分类和特征提取; 2)提案产生。我们提出的上下文感知的建议网络(CPN)建立在BMN,GTAD和PRN之上,通过随机掩盖某些建议功能来汇总上下文信息。 3)动作检测。最终检测预测是通过分配具有相应视频级分类结果的建议来计算的。最后,我们在不同的功能组合设置下将结果整合在一起,并在测试集上实现45.8%的性能,从而将CVPR-2021 ActivityNet挑战的冠军结果提高了1.1%。
This technical report presents our first place winning solution for temporal action detection task in CVPR-2022 AcitivityNet Challenge. The task aims to localize temporal boundaries of action instances with specific classes in long untrimmed videos. Recent mainstream attempts are based on dense boundary matchings and enumerate all possible combinations to produce proposals. We argue that the generated proposals contain rich contextual information, which may benefits detection confidence prediction. To this end, our method mainly consists of the following three steps: 1) action classification and feature extraction by Slowfast, CSN, TimeSformer, TSP, I3D-flow, VGGish-audio, TPN and ViViT; 2) proposal generation. Our proposed Context-aware Proposal Network (CPN) builds on top of BMN, GTAD and PRN to aggregate contextual information by randomly masking some proposal features. 3) action detection. The final detection prediction is calculated by assigning the proposals with corresponding video-level classifcation results. Finally, we ensemble the results under different feature combination settings and achieve 45.8% performance on the test set, which improves the champion result in CVPR-2021 ActivityNet Challenge by 1.1% in terms of average mAP.