论文标题

通过二次编程稳健的组同步

Robust Group Synchronization via Quadratic Programming

论文作者

Shi, Yunpeng, Wyeth, Cole, Lerman, Gilad

论文摘要

我们提出了一种新型的二次编程公式,用于估计群体同步中的损坏水平,并使用这些估计来解决此问题。我们的目标函数利用了组的循环一致性,因此我们将我们的方法称为结构一致性(DESC)的检测和估计。该一般框架可以扩展到其他代数和几何结构。我们的表述具有以下优势:它可以忍受与信息理论界限一样高的腐败,它不需要对群体元素的估计值进行良好的初始化,它具有简单的解释,在某些温和的条件下,我们目标功能的全球最小值完全恢复了腐败水平。我们证明了方法在旋转平均的合成和真实数据实验上的竞争精度。

We propose a novel quadratic programming formulation for estimating the corruption levels in group synchronization, and use these estimates to solve this problem. Our objective function exploits the cycle consistency of the group and we thus refer to our method as detection and estimation of structural consistency (DESC). This general framework can be extended to other algebraic and geometric structures. Our formulation has the following advantages: it can tolerate corruption as high as the information-theoretic bound, it does not require a good initialization for the estimates of group elements, it has a simple interpretation, and under some mild conditions the global minimum of our objective function exactly recovers the corruption levels. We demonstrate the competitive accuracy of our approach on both synthetic and real data experiments of rotation averaging.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源