论文标题
有效地学习单臂飞行运动以使服装光滑
Efficiently Learning Single-Arm Fling Motions to Smooth Garments
论文作者
论文摘要
最近的工作表明,2臂“ fling”运动对于服装平滑可能是有效的。我们考虑单臂弹性动作。与几乎不需要机器人轨迹参数调整的2臂fling运动不同,单臂fling运动对轨迹参数非常敏感。我们考虑一个单一的6多机器人臂,该机器人臂学习跨越轨迹以获得高衣覆盖。给定服装抓握点,机器人在物理实验中探索了不同的参数化fling轨迹。为了提高学习效率,我们提出了一种粗到精细的学习方法,该方法首先使用多军匪徒(MAB)框架有效地找到候选动作,然后通过连续的优化方法来完善。此外,我们提出了基于Fling Fall结果不确定性的新颖培训和执行时间停止标准。训练时间停止标准提高了数据效率,而执行时间停止标准则利用重复的动作来提高性能。与基线相比,提出的方法显着加速学习。此外,凭借通过自我训练收集的类似服装的先前经验,新服装的MAB学习时间最多减少了87%。我们评估36套真实服装:毛巾,T恤,长袖衬衫,礼服,汗水裤和牛仔裤。结果表明,使用先前的经验,机器人需要30分钟以下的时间才能为达到60-94%覆盖范围的新型服装学习一项动作。
Recent work has shown that 2-arm "fling" motions can be effective for garment smoothing. We consider single-arm fling motions. Unlike 2-arm fling motions, which require little robot trajectory parameter tuning, single-arm fling motions are very sensitive to trajectory parameters. We consider a single 6-DOF robot arm that learns fling trajectories to achieve high garment coverage. Given a garment grasp point, the robot explores different parameterized fling trajectories in physical experiments. To improve learning efficiency, we propose a coarse-to-fine learning method that first uses a multi-armed bandit (MAB) framework to efficiently find a candidate fling action, which it then refines via a continuous optimization method. Further, we propose novel training and execution-time stopping criteria based on fling outcome uncertainty; the training-time stopping criterion increases data efficiency while the execution-time stopping criteria leverage repeated fling actions to increase performance. Compared to baselines, the proposed method significantly accelerates learning. Moreover, with prior experience on similar garments collected through self-supervision, the MAB learning time for a new garment is reduced by up to 87%. We evaluate on 36 real garments: towels, T-shirts, long-sleeve shirts, dresses, sweat pants, and jeans. Results suggest that using prior experience, a robot requires under 30 minutes to learn a fling action for a novel garment that achieves 60-94% coverage.