论文标题
真正多部分非局部性的最佳测试
Optimal tests of genuine multipartite nonlocality
论文作者
论文摘要
我们提出了基于线性编程的真正多部分非局部性的最佳数值测试。特别是,我们考虑了局部隐藏变量的两个非等效模型,即svetlichny和无信号的双腹模型。虽然我们关于这些模型的知识是针对每个一方涉及两个测量设置的铃铛场景的良好确定的,但基于任意数量的设置的一般情况是一项更具挑战性的任务,在该领域的工作很少。在本文中,我们应用了此类常规测试来检测和表征针对三个量子位和Qutrits各种状态的真正$ n $ n $ n $ n $ nocal相关性。作为非局部性的衡量标准,我们使用了在随机采样的可观察结果下违反当地现实主义的可能性,以及非局部性的强度,通过对白噪声混合的抗性描述。特别是,我们分析了涉及两个测量设置的铃铛场景在多大程度上可用于确定针对更通用模型生成的真正$ n $ n $ n $ n $ nocal非本地相关性。此外,我们提出了一个简单的程序,以检测真正的多部分非局部性,以进行多达100%效率的随机选择。
We propose an optimal numerical test for genuine multipartite nonlocality based on linear programming. In particular, we consider two non-equivalent models of local hidden variables, namely the Svetlichny and the no-signaling bilocal model. While our knowledge concerning these models is well established for Bell scenarios involving two measurement settings per party, the general case based on an arbitrary number of settings is a considerably more challenging task and very little work has been done in this field. In this paper, we applied such general tests to detect and characterize genuine $n$-way nonlocal correlations for various states of three qubits and qutrits. As a measure of nonlocality, we use the probability of violation of local realism under randomly sampled observables, and the strength of nonlocality, described by the resistance to white noise admixture. In particular, we analyze to what extent the Bell scenario involving two measurement settings can be used to determine genuine $n$-way non-local correlations generated for more general models. In addition, we propose a simple procedure to detect genuine multipartite nonlocality for randomly chosen settings with up to 100% efficiency.