论文标题

球形切成薄片

Spherical Sliced-Wasserstein

论文作者

Bonet, Clément, Berg, Paul, Courty, Nicolas, Septier, François, Drumetz, Lucas, Pham, Minh-Tan

论文摘要

引入了Wasserstein距离的许多变体,以减轻其原始计算负担。尤其是切成薄片的距离(SW),该距离(SW)利用了一维预测,可以使用封闭式的解决方案,并获得了封闭形式的解决方案。然而,它仅限于生活在欧几里得空间中的数据,而Wasserstein距离已被研究和最近在歧管上使用。我们更具体地专门地关注球体,为此我们定义了一种新颖的SW差异,我们称之为球形切片 - - 韦森斯坦,迈出了朝着确定歧管上的SW差异的第一步。我们的构建明显基于圆圈上瓦斯汀距离的封闭式解决方案,以及新的球形ra径。除了有效的算法和相应的实现外,我们在几个机器学习用例中说明了它的特性,在这些用例中,数据的球形表示存在危险:在球体上进行采样,对真实地球数据或超球体自动编码器的密度估计。

Many variants of the Wasserstein distance have been introduced to reduce its original computational burden. In particular the Sliced-Wasserstein distance (SW), which leverages one-dimensional projections for which a closed-form solution of the Wasserstein distance is available, has received a lot of interest. Yet, it is restricted to data living in Euclidean spaces, while the Wasserstein distance has been studied and used recently on manifolds. We focus more specifically on the sphere, for which we define a novel SW discrepancy, which we call spherical Sliced-Wasserstein, making a first step towards defining SW discrepancies on manifolds. Our construction is notably based on closed-form solutions of the Wasserstein distance on the circle, together with a new spherical Radon transform. Along with efficient algorithms and the corresponding implementations, we illustrate its properties in several machine learning use cases where spherical representations of data are at stake: sampling on the sphere, density estimation on real earth data or hyperspherical auto-encoders.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源