论文标题

对于Dirichlet条件的分数P-Laplacian的最佳可溶性

Optimal solvability for the fractional p-Laplacian with Dirichlet conditions

论文作者

Iannizzotto, Antonio, Mugnai, Dimitri

论文摘要

我们研究了由分数p-laplacian驱动的非线性,非局部差异问题,涉及(p-1) - 公共反应。通过薄弱的比较原则,我们证明了解决方案的独特性。同样,将问题与同一操作员的“渐近”加权特征值问题进行比较,我们证明了解决方案的必要条件。我们的工作将由于Brezis-Oswald和Diaz-Saa而扩展到了准线性非局部框架。

We study a nonlinear, nonlocal Dirichlet problem driven by the fractional p-Laplacian, involving a (p-1)-sublinear reaction. By means of a weak comparison principle we prove uniqueness of the solution. Also, comparing the problem to 'asymptotic' weighted eigenvalue problems for the same operator, we prove a necessary and sufficient condition for the existence of a solution. Our work extends classical results due to Brezis-Oswald and Diaz-Saa to the quasilinear nonlocal framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源