论文标题

关于投射张量产品的紧凑性弱

On weak compactness in projective tensor products

论文作者

Rodríguez, José

论文摘要

我们研究了在Banach空间的投射张量产品中强烈紧凑地产生(以及一些亲戚)的特性。我们的主要结果如下。令$ 1 <p,q <\ infty $为$ 1/p+1/q \ geq 1 $。令$ x $(resp。,$ y $)为Banach空间,具有可计数的无条件有限维型schauder分解,具有偏低的较低$ p $ estimate(分别,$ q $ estimate)。如果$ x $和$ y $是强烈的紧凑生成的,那么其投射张量产品$ x \ wideHat {\ otimes}_πy$也是如此。

We study the property of being strongly weakly compactly generated (and some relatives) in projective tensor products of Banach spaces. Our main result is as follows. Let $1<p,q<\infty$ be such that $1/p+1/q\geq 1$. Let $X$ (resp., $Y$) be a Banach space with a countable unconditional finite-dimensional Schauder decomposition having a disjoint lower $p$-estimate (resp., $q$-estimate). If $X$ and $Y$ are strongly weakly compactly generated, then so is its projective tensor product $X \widehat{\otimes}_πY$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源