论文标题

使用训练有泳道损失的两阶段预测网络的多种多重轨迹预测

Diverse Multiple Trajectory Prediction Using a Two-stage Prediction Network Trained with Lane Loss

论文作者

Kim, Sanmin, Jeon, Hyeongseok, Choi, Junwon, Kum, Dongsuk

论文摘要

自主驾驶的运动预测领域的先前艺术倾向于寻找接近地面真理轨迹的轨迹。但是,这种问题的表述和方法经常导致多样性和偏见轨迹预测的丧失。因此,它们不适合现实世界的自主驾驶,在这种驾驶中,多样化和依赖道路的多模式轨迹预测对安全至关重要。为此,这项研究提出了一种新颖的损失函数\ textit {lane损失},可确保地图自适应多样性并适应几何约束。具有新型轨迹候选建议模块\ textIt {轨迹预测注意(TPA)}的两阶段轨迹预测架构受到泳道损失的训练,鼓励多个轨迹分布多样,从而涵盖了以图像意识的方式涵盖可行的操作。此外,考虑到现有的轨迹性能指标正在重点是基于地面真理未来轨迹评估准确性,因此还建议定量评估指标来评估预测的多个轨迹的多样性。在Argoverse数据集上进行的实验表明,所提出的方法显着提高了预测轨迹的多样性,而无需牺牲预测准确性。

Prior arts in the field of motion predictions for autonomous driving tend to focus on finding a trajectory that is close to the ground truth trajectory. Such problem formulations and approaches, however, frequently lead to loss of diversity and biased trajectory predictions. Therefore, they are unsuitable for real-world autonomous driving where diverse and road-dependent multimodal trajectory predictions are critical for safety. To this end, this study proposes a novel loss function, \textit{Lane Loss}, that ensures map-adaptive diversity and accommodates geometric constraints. A two-stage trajectory prediction architecture with a novel trajectory candidate proposal module, \textit{Trajectory Prediction Attention (TPA)}, is trained with Lane Loss encourages multiple trajectories to be diversely distributed, covering feasible maneuvers in a map-aware manner. Furthermore, considering that the existing trajectory performance metrics are focusing on evaluating the accuracy based on the ground truth future trajectory, a quantitative evaluation metric is also suggested to evaluate the diversity of predicted multiple trajectories. The experiments performed on the Argoverse dataset show that the proposed method significantly improves the diversity of the predicted trajectories without sacrificing the prediction accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源