论文标题
在具有完美匹配层的异质介质中的波方程的能量稳定和高阶有限元方法上
On energy-stable and high order finite element methods for the wave equation in heterogeneous media with perfectly matched layers
论文作者
论文摘要
本文为二阶形式的声波方程式提供了一个稳定的有限元近似,在边界处具有完美匹配的层(PML)。对于离散和连续情况,用于不同的PML阻尼的能量估计值。此外,对于常数PML阻尼得出了先验误差估计。大多数分析都是在拉普拉斯空间中进行的。物理空间中的数值实验验证了理论结果。
This paper presents a stable finite element approximation for the acoustic wave equation on second-order form, with perfectly matched layers (PML) at the boundaries. Energy estimates are derived for varying PML damping for both the discrete and the continuous case. Moreover, a priori error estimates are derived for constant PML damping. Most of the analysis is performed in Laplace space. Numerical experiments in physical space validate the theoretical results.