论文标题
单层半导体中的极化Chern绝缘子
Polaritonic Chern insulators in monolayer semiconductors
论文作者
论文摘要
具有较强光的相互作用的系统为研究物质的拓扑阶段开辟了新的途径。例子包括激子 - 摩尔体子,混合光 - 物质的准颗粒,其中极化带结构的拓扑结构来自物质波和光场之间的集体耦合,这些耦合在周期性的介电结构中强烈限制。在均匀环境中,与光磁相互作用不同,光场的空间变化性质导致了众所周知的光学选择规则的基本修改,该规则是在平面波近似下得出的。在这里,我们通过将过渡金属二分法(TMDS)中的山谷激子(TMD)耦合到介电光子晶体(PHC)板中的光子BLOCH模式来鉴定偏光式Chern绝缘子。我们表明,在存在时间反转和反转对称性的情况下,可以从山谷激子和光子狄拉克锥之间的集体耦合来构建极性狄拉克点(DPS),它们是拓扑相变点的标记。通过打破时间反向对称性来提升激子谷退化,导致具有非零Chern数字的偏光频带。通过数值模拟,我们预测位于拓扑间隙内的极化性手性边缘状态。我们的工作为进一步探索二极化拓扑阶段及其在极化设备中的实际应用铺平了道路。
Systems with strong light-matter interaction opens up new avenues for studying topological phases of matter. Examples include exciton-polaritons, mixed light-matter quasiparticles, where the topology of the polaritonic band structure arises from the collective coupling between matter wave and optical fields strongly confined in periodic dielectric structures. Distinct from light-matter interaction in a uniform environment, the spatially varying nature of the optical fields leads to a fundamental modification of the well-known optical selection rules, which were derived under the plane wave approximation. Here we identify polaritonic Chern insulators by coupling valley excitons in transition metal dichalcogenides (TMDs) to photonic Bloch modes in a dielectric photonic crystal (PhC) slab. We show that polaritonic Dirac points (DPs), which are markers for topological phase transition points, can be constructed from the collective coupling between valley excitons and photonic Dirac cones in the presence of both time-reversal and inversion symmetries. Lifting exciton valley degeneracy by breaking time-reversal symmetry leads to gapped polaritonic bands with non-zero Chern numbers. Through numerical simulations, we predict polaritonic chiral edge states residing inside the topological gaps. Our work paves the way to further explore polaritonic topological phases and their practical applications in polaritonic devices.