论文标题

Cutkosky的大规模单环Feynman积分定理 - 第1部分

Cutkosky's Theorem for Massive One-Loop Feynman Integrals -- Part 1

论文作者

Mühlbauer, Maximilian

论文摘要

我们制定并证明了Cutkosky的定理,内容涉及在大规模的单循环中,直到涉及的交叉点指数中的Feynman积分的不连续性。这是通过应用技术来处理\ cite {app-iso}中开发的单数积分来完成的。我们将一环积分写为紧凑型循环中全态形式的全态家族的组成部分。然后,我们确定在哪些点发生简单的捏合,并明确计算相应消失的球体的代表。这也产生了一种算法来计算一环图的Landau表面,而无需明确求解Landau方程。我们还详细讨论了气泡,三角形和框图。

We formulate and prove Cutkosky's Theorem regarding the discontinuity of Feynman integrals in the massive one-loop case up to the involved intersection index. This is done by applying the techniques to treat singular integrals developed in \cite{app-iso}. We write one-loop integrals as an integral of a holomorphic family of holomorphic forms over a compact cycle. Then, we determine at which points simple pinches occur and explicitly compute a representative of the corresponding vanishing sphere. This also yields an algorithm to compute the Landau surface of a one-loop graph without explicitly solving the Landau equations. We also discuss the bubble, triangle and box graph in detail.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源