论文标题

具有低保真模型的数字双胞胎与物理信息的高斯流程之间的学习物理学

Learning Physics between Digital Twins with Low-Fidelity Models and Physics-Informed Gaussian Processes

论文作者

Spitieris, Michail, Steinsland, Ingelin

论文摘要

数字双胞胎是代表个人的计算机模型,例如组件,患者或过程。在许多情况下,我们希望从其数据中获取有关个人的知识,同时还要纳入不完善的物理知识,并从其他人那里学习。在本文中,我们引入了一种完全贝叶斯的方法,用于在每个人都有物理参数的环境中学习数字双胞胎之间的学习。每个个性化模型的模型公式中纳入了模型差异项,以说明低保真模型的缺失物理。为了允许个人之间的信息共享,我们引入了贝叶斯分层建模框架,其中各个模型通过层次结构的新级别连接。在两个案例研究中证明了我们的方法,这是文献中以前使用的玩具示例扩展到更多个体,并且是与治疗高血压治疗相关的心血管模型。案例研究表明,1)不考虑不完美的物理模型的模型是有偏见的,并且过度自信,2)占不完善物理模型的模型更不确定,但涵盖了事实,3)数字双胞胎之间的模型与相应的独立单个模型的不确定性较小,但并非过于稳定。

A digital twin is a computer model that represents an individual, for example, a component, a patient or a process. In many situations, we want to gain knowledge about an individual from its data while incorporating imperfect physical knowledge and also learn from data from other individuals. In this paper, we introduce a fully Bayesian methodology for learning between digital twins in a setting where the physical parameters of each individual are of interest. A model discrepancy term is incorporated in the model formulation of each personalized model to account for the missing physics of the low-fidelity model. To allow sharing of information between individuals, we introduce a Bayesian Hierarchical modelling framework where the individual models are connected through a new level in the hierarchy. Our methodology is demonstrated in two case studies, a toy example previously used in the literature extended to more individuals and a cardiovascular model relevant for the treatment of Hypertension. The case studies show that 1) models not accounting for imperfect physical models are biased and over-confident, 2) the models accounting for imperfect physical models are more uncertain but cover the truth, 3) the models learning between digital twins have less uncertainty than the corresponding independent individual models, but are not over-confident.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源