论文标题
关于周期性丘陵流的隐性大型模拟观点
An implicit large-eddy simulation perspective on the flow over periodic hills
论文作者
论文摘要
周期性的丘陵模拟情况是计算流体动力学求解器的完善基准,这是因为其复杂特征是从湍流与弯曲表面的分离中得出的。我们使用开源隐式大型模拟(Iles)软件LETHE研究了案例。 LETHE通过应用稳定的连续有限元离散化来解决不可压缩的Navier-Stokes方程。通过与RE = 5600的文献中可用的实验和计算数据进行比较,可以验证结果。我们研究时间步长,平均时间和全球网格细化的效果。与参考数值解决方案相比,使用自由度较小的雷诺(Reynolds)对平均速度的精度和雷诺的压力良好。使用更粗的网格时,时间步骤对准确性具有更大的影响,而对于Fine网格,当使用隐式时间稳定的方法时,结果迅速独立。通过几个网格获得了重新安置点的良好预测,并且随着网格的完善,该值接近实验基准值。我们还在雷诺(Reynolds)进行的模拟等于10600和37000,并观察到Iles方法的有希望的结果。
The periodic hills simulation case is a well-established benchmark for computational fluid dynamics solvers due to its complex features derived from the separation of a turbulent flow from a curved surface. We study the case with the open-source implicit large-eddy simulation (ILES) software Lethe. Lethe solves the incompressible Navier-Stokes equations by applying a stabilised continuous finite element discretisation. The results are validated by comparison to experimental and computational data available in the literature for Re = 5600. We study the effect of the time step, averaging time, and global mesh refinement. The ILES approach shows good accuracy for average velocities and Reynolds stresses using less degrees of freedom than the reference numerical solution. The time step has a greater effect on the accuracy when using coarser meshes, while for fine meshes the results are rapidly time-step independent when using an implicit time-stepping approach. A good prediction of the reattachment point is obtained with several meshes and this value approaches the experimental benchmark value as the mesh is refined. We also run simulations at Reynolds equal to 10600 and 37000 and observe promising results for the ILES approach.