论文标题
深神经插补:恢复不完整脑记录的框架
Deep Neural Imputation: A Framework for Recovering Incomplete Brain Recordings
论文作者
论文摘要
神经科学家和神经工程师长期以来一直依赖多电极神经记录来研究大脑。但是,在典型的实验中,许多因素损坏了来自单个电极的神经记录,包括电噪声,移动伪像和制造错误。当前,普遍的做法是丢弃这些损坏的录音,减少已经有限的数据很难收集。为了应对这一挑战,我们提出了深层神经插补(DNI),该框架是通过从空间位置,天数和参与者中收集的数据中学习从电极中恢复缺失值的框架。我们通过线性最近的邻居方法和两个深层生成自动编码器探索我们的框架,证明了DNI的灵活性。一个深层的自动编码器单独建模参与者,而另一个则将此体系结构扩展到许多参与者共同建模。我们评估了12名用多电极内电图阵列植入的人类参与者的模型;参与者没有明确的任务,并且在数百个记录小时内自然行为。我们表明,DNI不仅恢复了时间序列,还恢复了频率内容,并通过在科学相关的下游神经解码任务上恢复出色的性能来进一步确立DNI的实践价值。
Neuroscientists and neuroengineers have long relied on multielectrode neural recordings to study the brain. However, in a typical experiment, many factors corrupt neural recordings from individual electrodes, including electrical noise, movement artifacts, and faulty manufacturing. Currently, common practice is to discard these corrupted recordings, reducing already limited data that is difficult to collect. To address this challenge, we propose Deep Neural Imputation (DNI), a framework to recover missing values from electrodes by learning from data collected across spatial locations, days, and participants. We explore our framework with a linear nearest-neighbor approach and two deep generative autoencoders, demonstrating DNI's flexibility. One deep autoencoder models participants individually, while the other extends this architecture to model many participants jointly. We evaluate our models across 12 human participants implanted with multielectrode intracranial electrocorticography arrays; participants had no explicit task and behaved naturally across hundreds of recording hours. We show that DNI recovers not only time series but also frequency content, and further establish DNI's practical value by recovering significant performance on a scientifically-relevant downstream neural decoding task.