论文标题
核心选择的性能分析,用于量子实施K-均值聚类算法
Performance analysis of coreset selection for quantum implementation of K-Means clustering algorithm
论文作者
论文摘要
预计量子计算将提供巨大的计算能力,可以为许多数据科学问题提供有效的解决方案。但是,当前一代的量子设备很小且嘈杂,这使得处理与实际问题相关的大数据集变得困难。核心选择旨在通过减少输入数据的大小而不损害准确性来避免此问题。最近的工作表明,核心选择可以帮助实施量子K-均值聚类问题。但是,尚未探索核心选择对量子K-均值聚类性能的影响。在这项工作中,我们比较了两种核心技术(BFL16和Oneshot)的相对性能,以及在每种情况下的核心结构的大小,相对于各种数据集,并布局在实现量子算法中的核心选择的优点和局限性。我们还研究了去极化量子噪声和位叶片误差的影响,并实施了量子自动编码器技术以超过噪声效应。我们的工作为未来在近期量子设备上实施数据科学算法提供了有用的见解,这些量子设备通过核心选择减少了问题大小。
Quantum computing is anticipated to offer immense computational capabilities which could provide efficient solutions to many data science problems. However, the current generation of quantum devices are small and noisy, which makes it difficult to process large data sets relevant for practical problems. Coreset selection aims to circumvent this problem by reducing the size of input data without compromising the accuracy. Recent work has shown that coreset selection can help to implement quantum K-Means clustering problem. However, the impact of coreset selection on the performance of quantum K-Means clustering has not been explored. In this work, we compare the relative performance of two coreset techniques (BFL16 and ONESHOT), and the size of coreset construction in each case, with respect to a variety of data sets and layout the advantages and limitations of coreset selection in implementing quantum algorithms. We also investigated the effect of depolarisation quantum noise and bit-flip error, and implemented the Quantum AutoEncoder technique for surpassing the noise effect. Our work provides useful insights for future implementation of data science algorithms on near-term quantum devices where problem size has been reduced by coreset selection.