论文标题
联合数据分析:线性模型的研究
Federated Data Analytics: A Study on Linear Models
论文作者
论文摘要
随着边缘设备变得越来越强大,数据分析逐渐从集中式转移到分散的制度,在该制度中,利用边缘计算资源以在本地处理更多数据。这种分析制度被认为是联合数据分析(FDA)。尽管FDA最近有成功的案例,但大多数文献都专注于深度神经网络。在这项工作中,我们退后一步,为最基本的统计模型之一开发了FDA处理:线性回归。我们的处理是建立在层次建模的基础上,该模型允许多个组借用强度。为此,我们提出了两个联合的层次模型结构,它们在跨设备之间提供共享表示以促进信息共享。值得注意的是,我们提出的框架能够提供不确定性量化,可变选择,假设检验以及对新看不见数据的快速适应。我们在一系列现实生活中验证了我们的方法,包括对飞机发动机的条件监控。结果表明,我们对线性模型的FDA处理可以作为联合算法未来开发的竞争基准模型。
As edge devices become increasingly powerful, data analytics are gradually moving from a centralized to a decentralized regime where edge compute resources are exploited to process more of the data locally. This regime of analytics is coined as federated data analytics (FDA). In spite of the recent success stories of FDA, most literature focuses exclusively on deep neural networks. In this work, we take a step back to develop an FDA treatment for one of the most fundamental statistical models: linear regression. Our treatment is built upon hierarchical modeling that allows borrowing strength across multiple groups. To this end, we propose two federated hierarchical model structures that provide a shared representation across devices to facilitate information sharing. Notably, our proposed frameworks are capable of providing uncertainty quantification, variable selection, hypothesis testing and fast adaptation to new unseen data. We validate our methods on a range of real-life applications including condition monitoring for aircraft engines. The results show that our FDA treatment for linear models can serve as a competing benchmark model for future development of federated algorithms.