论文标题

部分可观测时空混沌系统的无模型预测

Taxonomy of Benchmarks in Graph Representation Learning

论文作者

Liu, Renming, Cantürk, Semih, Wenkel, Frederik, McGuire, Sarah, Wang, Xinyi, Little, Anna, O'Bray, Leslie, Perlmutter, Michael, Rieck, Bastian, Hirn, Matthew, Wolf, Guy, Rampášek, Ladislav

论文摘要

图形神经网络(GNNS)通过考虑其内在的几何形状来扩展神经网络的成功到图形结构化数据。尽管根据图表学习基准的集合开发具有卓越性能的GNN模型的广泛研究,但目前尚不清楚其探测给定模型的哪些方面。例如,他们在多大程度上测试了模型利用图形结构与节点特征的能力?在这里,我们开发了一种原则性的方法,根据$ \ textit {sensitivity profile} $分类数据,该方法基于由于图形扰动的收集而导致的GNN性能变化了多少。我们的数据驱动分析提供了对GNN利用哪些基准数据特征的更深入了解。因此,我们的分类法可以帮助选择和开发适当的图基准测试,并更好地评估未来的GNN方法。最后,我们在$ \ texttt {gtaxogym} $软件包中的方法和实现可扩展到多个图形预测任务类型和未来数据集。

Graph Neural Networks (GNNs) extend the success of neural networks to graph-structured data by accounting for their intrinsic geometry. While extensive research has been done on developing GNN models with superior performance according to a collection of graph representation learning benchmarks, it is currently not well understood what aspects of a given model are probed by them. For example, to what extent do they test the ability of a model to leverage graph structure vs. node features? Here, we develop a principled approach to taxonomize benchmarking datasets according to a $\textit{sensitivity profile}$ that is based on how much GNN performance changes due to a collection of graph perturbations. Our data-driven analysis provides a deeper understanding of which benchmarking data characteristics are leveraged by GNNs. Consequently, our taxonomy can aid in selection and development of adequate graph benchmarks, and better informed evaluation of future GNN methods. Finally, our approach and implementation in $\texttt{GTaxoGym}$ package are extendable to multiple graph prediction task types and future datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源