论文标题

不均匀的drude-lorentz模型的光谱特性

Spectral properties of the inhomogeneous Drude-Lorentz model with dissipation

论文作者

Ferraresso, Francesco, Marletta, Marco

论文摘要

我们在可能无限的lipschitz域中建立了具有纯粹想象的杆的不均匀损失的drude-lorentz系统的光谱外壳和光谱近似结果。在假设$θ_e$,$θ_m$的材料的假设上是渐近的,我们证明:1)可以将基本频谱分解为有界操作员频谱的结合,形式为$ - \ perpotatornAme {div} p(div} p(div} p(ω) \ operatatorName {curl} _0 -v_ {e,\ infty}(ω)$ pencil具有常数系数; 2)由于域截断而引起的光谱污染只能位于$ \ operatatorName {curl} \ operatatorName {curl} _0 -f(ω)$ pencil的基本数值范围内。作为应用程序,我们考虑在与真空的接口处进行超材料。我们证明,具有非平凡实际部分的复杂特征值在光谱污染的集合之外。我们认为,这是DRUDE-LORENTZ模型的光谱污染围栏的第一个结果,而没有对基础麦克斯韦操作员的分解的假设。

We establish spectral enclosures and spectral approximation results for the inhomogeneous lossy Drude-Lorentz system with purely imaginary poles, in a possibly unbounded Lipschitz domain of $\mathbb{R}^3$. Under the assumption that the coefficients $θ_e$, $θ_m$ of the material are asymptotically constant at infinity, we prove that: 1) the essential spectrum can be decomposed as the union of the spectrum of a bounded operator pencil in the form $- \operatorname{div} p(ω) \nabla$ and of a second order $\operatorname{curl} \operatorname{curl}_0 - V_{e,\infty}(ω)$ pencil with constant coefficients; 2) spectral pollution due to domain truncation can lie only in the essential numerical range of a $\operatorname{curl} \operatorname{curl}_0 - f(ω)$ pencil. As an application, we consider a conducting metamaterial at the interface with the vacuum; we prove that the complex eigenvalues with non-trivial real part lie outside the set of spectral pollution. We believe this is the first result of enclosure of spectral pollution for the Drude-Lorentz model without assumptions of compactness on the resolvent of the underlying Maxwell operator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源