论文标题
小组测试中的统计和计算相变
Statistical and Computational Phase Transitions in Group Testing
论文作者
论文摘要
我们研究了小组测试问题,目的是根据合并测试的结果确定一组在N大小N群体中携带稀有疾病的人,每当经过测试组中至少有一个受感染的个体时,这些疾病的结果是呈阳性的。我们考虑将个人分配给测试的两个不同的简单随机过程:恒定柱设计和伯努利设计。我们的第一组结果涉及基本统计限制。对于恒定柱设计,我们给出了一个新的信息理论下限,这意味着正确识别的感染者的比例会在测试数量越过特定阈值时经历急剧的“全或全部”相跃迁。对于Bernoulli设计,我们确定解决相关检测问题所需的确切测试数(目的是区分小组测试实例和纯噪声),改善Truong,Aldridge和Scarlett的上限和下限(2020)。对于两个组测试模型,我们还研究了计算有效(多项式时间)推理程序的能力。我们确定了解决检测问题的低度多项式算法所需的精确测试数量。这为在少量稀疏度的检测和恢复问题中都存在固有的计算统计差距提供了证据。值得注意的是,我们的证据与Iliopoulos和Zadik(2021)相反,后者预测了Bernoulli设计中没有计算统计差距。
We study the group testing problem where the goal is to identify a set of k infected individuals carrying a rare disease within a population of size n, based on the outcomes of pooled tests which return positive whenever there is at least one infected individual in the tested group. We consider two different simple random procedures for assigning individuals to tests: the constant-column design and Bernoulli design. Our first set of results concerns the fundamental statistical limits. For the constant-column design, we give a new information-theoretic lower bound which implies that the proportion of correctly identifiable infected individuals undergoes a sharp "all-or-nothing" phase transition when the number of tests crosses a particular threshold. For the Bernoulli design, we determine the precise number of tests required to solve the associated detection problem (where the goal is to distinguish between a group testing instance and pure noise), improving both the upper and lower bounds of Truong, Aldridge, and Scarlett (2020). For both group testing models, we also study the power of computationally efficient (polynomial-time) inference procedures. We determine the precise number of tests required for the class of low-degree polynomial algorithms to solve the detection problem. This provides evidence for an inherent computational-statistical gap in both the detection and recovery problems at small sparsity levels. Notably, our evidence is contrary to that of Iliopoulos and Zadik (2021), who predicted the absence of a computational-statistical gap in the Bernoulli design.