论文标题
固有的正方形函数和换向因子在广义中央莫雷空间上
Boundedness of intrinsic square functions and commutators on generalized central Morrey spaces
论文作者
论文摘要
在本文中,作者建立了一大批内在正方形功能的界限$ \ MATHCAL {g}_α$,$g_α$,$ g^{\ ast} _ {\tildeλ,α} $及其交换器及其commutators $ [B,\ nathcal {G} $ a $ a $ a $ [$] $ [b,g^{\ ast} _ {\tildeλ,α}] $,用$λ$ - 中心$ bmo $ $ $ $ bmo $ b \ in cbmo^{p,λ}(\ mathbb {r Mathbb {r} $ \ MATHCAL {B}^{q,φ}(\ Mathbb {r}^{n})$分别为$ 1 <q <Q <\ infty,0 <α\ leq1 $。即使在中央莫雷空间上,所有结果都是新的,$ \ mathcal {b}^{q,λ}(\ mathbb {r}^{n})$。
In this paper, the authors establish the boundedness for a large class of intrinsic square functions $\mathcal{G}_α$, $g_α$, $g^{\ast}_{\tildeλ,α}$ and their commutators $[b,\mathcal{G}_α]$, $[b,g_α]$ and $[b,g^{\ast}_{\tildeλ,α}]$ generated with $λ$-central $BMO$ functions $b\in CBMO^{p,λ}(\mathbb{R}^{n})$ on generalized central Morrey spaces $\mathcal{B}^{q,φ}(\mathbb{R}^{n})$ for $1<q<\infty,0<α\leq1$, respectively. All of the results are new even on the central Morrey spaces $\mathcal{B}^{q,λ}(\mathbb{R}^{n})$.