论文标题

用重尾噪声和协变量对线性回归系数的强大和稀疏估计

Robust and Sparse Estimation of Linear Regression Coefficients with Heavy-tailed Noises and Covariates

论文作者

Sasai, Takeyuki

论文摘要

研究了线性回归系数的稳健和稀疏估计。本文解决的情况是,协变量和噪音是从重型分布中取样的,而协变量和噪音被恶意异常值污染。我们的估计器可以有效地计算。此外,估计器的误差界限几乎是最佳的。

Robust and sparse estimation of linear regression coefficients is investigated. The situation addressed by the present paper is that covariates and noises are sampled from heavy-tailed distributions, and the covariates and noises are contaminated by malicious outliers. Our estimator can be computed efficiently. Further, the error bound of the estimator is nearly optimal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源