论文标题
Hilbert空间,Banach空间和一组措施的特征性内核
Characteristic kernels on Hilbert spaces, Banach spaces, and on sets of measures
论文作者
论文摘要
我们在非标准空间上介绍了积极的确定内核的新类别,这些内核在非标准的空间上是严格的确定性或特征。特别是,我们讨论了可分离的希尔伯特空间上的径向内核,并在Banach空间和强型负类型的度量空间上引入了广泛的内核。一般结果用于在可分离的$ l^p $空间和一组措施上提供明确的核类。
We present new classes of positive definite kernels on non-standard spaces that are integrally strictly positive definite or characteristic. In particular, we discuss radial kernels on separable Hilbert spaces, and introduce broad classes of kernels on Banach spaces and on metric spaces of strong negative type. The general results are used to give explicit classes of kernels on separable $L^p$ spaces and on sets of measures.