论文标题

在预训练的语言模型中评估和诱导个性

Evaluating and Inducing Personality in Pre-trained Language Models

论文作者

Jiang, Guangyuan, Xu, Manjie, Zhu, Song-Chun, Han, Wenjuan, Zhang, Chi, Zhu, Yixin

论文摘要

对机器行为的标准化和量化评估是理解LLM的症结所在。在这项研究中,我们通过利用人格理论作为研究机器行为的工具,从心理测量研究中汲取灵感。作为对人类行为的哲学追求,对个性的研究研究了个人在思维,感觉和行为方面的差异。为了建立和理解类似人类的社会机器,我们有动力问:我们可以通过以原则性和定量的方式利用人类的心理测验来评估机器行为?如果是这样,我们可以在LLM中引起特定的个性吗?为了回答这些问题,我们介绍了用于研究机器行为的机器人格清单(MPI)工具; MPI遵循标准化的人格测试,基于五大人格因素(五大)理论和人格评估清单。通过系统地评估使用MPI的LLM,我们提供了第一个证据,证明了MPI在研究LLMS行为中的功效。我们进一步设计了一种个性提示(P^2)方法,以可控制的方式诱导具有特定个性的LLM,能够产生多样化和可验证的行为。我们希望这项工作通过采用人格作为各种下游任务的基本指标来阐明未来的研究,并可以进一步激励研究对同样有趣的人类型机器行为。

Standardized and quantified evaluation of machine behaviors is a crux of understanding LLMs. In this study, we draw inspiration from psychometric studies by leveraging human personality theory as a tool for studying machine behaviors. Originating as a philosophical quest for human behaviors, the study of personality delves into how individuals differ in thinking, feeling, and behaving. Toward building and understanding human-like social machines, we are motivated to ask: Can we assess machine behaviors by leveraging human psychometric tests in a principled and quantitative manner? If so, can we induce a specific personality in LLMs? To answer these questions, we introduce the Machine Personality Inventory (MPI) tool for studying machine behaviors; MPI follows standardized personality tests, built upon the Big Five Personality Factors (Big Five) theory and personality assessment inventories. By systematically evaluating LLMs with MPI, we provide the first piece of evidence demonstrating the efficacy of MPI in studying LLMs behaviors. We further devise a Personality Prompting (P^2) method to induce LLMs with specific personalities in a controllable way, capable of producing diverse and verifiable behaviors. We hope this work sheds light on future studies by adopting personality as the essential indicator for various downstream tasks, and could further motivate research into equally intriguing human-like machine behaviors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源