论文标题

部分可观测时空混沌系统的无模型预测

How can one use a two component Bose Einstein condensates to operationally bypass the No Cloning theorem?

论文作者

Datta, Shouvik

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The No Cloning theorem in quantum cryptography prevents any eavesdropper from exactly duplicating an arbitrary quantum superposition state of a single photon. Here we argue that an experimental scheme to produce an interacting, two component Bose-Einstein condensates can, in principle, generate macroscopically large number of bosonic clones of any arbitrary single photon wave packet with high fidelity at large N limit of thermodynamic equilibrium using excitons or electron hole pairs. It is possible, because initially one can isolate the two orthogonal polarizations using polarizing beam splitters and then amplify the corresponding single photon wave packets identically but separately. This is to ensure that the amplified beams can be used to generate proportionately same, yet large numbers of bosons to produce two distinct but interacting condensates using additional light matter interactions within a semiconductor structure. One can then extract the cloned photons once the identical excitons in the two-component quantum ground state of the condensate radiatively recombine. Thus the overall cloning process can operationally bypass the restrictions imposed by the above mentioned theorem. This is because the quantum statistical nature of this proposed cloning operation does not require any strict unitary evolution of standard quantum mechanics within a single Hilbert space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源