论文标题
与二阶突触的精确神经质量模型和启发式神经质量模型之间的比较
Comparison between an exact and a heuristic neural mass model with second order synapses
论文作者
论文摘要
神经质量模型(NMM)旨在重现神经元种群的集体动力学。 NMM的一个常见框架是启发式化的,可以通过静态非线性转移函数(NMM1)来描述神经种群的输出发射速率。然而,二次整合和形成二次传火(QIF)神经元的最新精确平均场理论通过表明平均射击率不是神经元状态的静态函数来挑战这种观点,而是遵循两个耦合的非线性微分方程(NMM2)。在这里,我们在存在二阶突触动力学的情况下分析和比较这两个描述。首先,我们在无限慢的突触限制中得出了两个模型之间的数学等效性,即,我们表明NMM1是该制度中NMM2的近似值。接下来,我们通过分析具有抑制性或兴奋性突触的模型的动力学来评估该极限在现实生理参数值的适用性。我们表明,NMM1无法再现精确模型的重要动力学特征,例如抑制性内神经元网络的自我维持的振荡。此外,在确切的模型中,但不在极限中,刺激金字塔细胞群会引起谐振活性活性,其峰值频率和振幅随着自我偶联增益而增加,并且外部兴奋性输入会增加。这可能在密度连接的网络对弱均匀输入的响应中起作用,例如非侵入性脑刺激产生的电场。
Neural mass models (NMMs) are designed to reproduce the collective dynamics of neuronal populations. A common framework for NMMs assumes heuristically that the output firing rate of a neural population can be described by a static nonlinear transfer function (NMM1). However, a recent exact mean-field theory for quadratic integrate-and-fire (QIF) neurons challenges this view by showing that the mean firing rate is not a static function of the neuronal state but follows two coupled nonlinear differential equations (NMM2). Here we analyze and compare these two descriptions in the presence of second-order synaptic dynamics. First, we derive the mathematical equivalence between the two models in the infinitely slow synapse limit, i.e., we show that NMM1 is an approximation of NMM2 in this regime. Next, we evaluate the applicability of this limit in the context of realistic physiological parameter values by analyzing the dynamics of models with inhibitory or excitatory synapses. We show that NMM1 fails to reproduce important dynamical features of the exact model, such as the self-sustained oscillations of an inhibitory interneuron QIF network. Furthermore, in the exact model but not in the limit one, stimulation of a pyramidal cell population induces resonant oscillatory activity whose peak frequency and amplitude increase with the self-coupling gain and the external excitatory input. This may play a role in the enhanced response of densely connected networks to weak uniform inputs, such as the electric fields produced by non-invasive brain stimulation.