论文标题

离散时间分层网络流行病模型,具有时变过渡率和多个资源

Discrete-time Layered-network Epidemics Model with Time-varying Transition Rates and Multiple Resources

论文作者

Cui, Shaoxuan, Liu, Fangzhou, Jardón-Kojakhmetov, Hildeberto, Cao, Ming

论文摘要

本文研究了一个离散的时间变化的多层网络SIWS(易感感染的水敏感)模型,在单病毒和竞争性的多病毒设置下具有多个资源。除了人与人之间的相互作用外,我们还认为该疾病可以在不同类型的培养基上扩散。我们使用\ emph {Resources}来指代病毒的病原体可以传播的任何培养基,并且不限制资源只是水。在单病毒案例中,我们对系统的健康状态和特有均衡的行为进行了完整分析。在多病毒案例中,我们在分析上表明,所有病毒之间的竞争似乎都驱动了不同的平衡。我们还表明,时间不变系统的某些分析结果可以扩展到随时间变化的情况下。最后,我们通过一些模拟说明结果。

This paper studies a discrete-time time-varying multi-layer networked SIWS (susceptible-infected-water-susceptible) model with multiple resources under both single-virus and competing multi-virus settings. Besides the human-to-human interaction, we also consider that the disease can diffuse on different types of medium. We use \emph{resources} to refer to any media that the pathogen of a virus can spread through, and do not restrict the resource only to be water. In the single-virus case, we give a full analysis of the system's behaviour related to its healthy state and endemic equilibrium. In the multi-virus case, we show analytically that different equilibria appear driven by the competition among all viruses. We also show that some analytical results of the time-invariant system can be expanded into time-varying cases. Finally, we illustrate the results through some simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源