论文标题

笛卡尔产品$(k_9-c_9)^n $

Pancyclicity in the Cartesian Product $(K_9-C_9 )^n$

论文作者

Afiya, Syeda, Rajesh, M

论文摘要

$ m $ theTices上的图形$ g $如果包含长度$ l $的周期,$ 3 \ leq l \ leq m $作为$ g $的子图。完整的图形$ k_ {9} $在9个顶点上,带有周期$ c_ {9} $长度为9的$ k_ {9} $由$(k_ {9} -c_ {9})表示。在本文中,我们证明$(k_ {9} -c_ {9})^{n} $,$(k_ {9} -c_ {9})$ n $ n $ times的笛卡尔产品是pancyclic。

A graph $G$ on $m$ vertices is pancyclic if it contains cycles of length $l$, $3\leq l \leq m$ as subgraphs in $G$. The complete graph $K_{9}$ on 9 vertices with a cycle $C_{9}$ of length 9 deleted from $K_{9}$ is denoted by $(K_{9}-C_{9})$. In this paper, we prove that $(K_{9}-C_{9})^{n}$, the Cartesian product of $(K_{9}-C_{9})$ taken $n$ times, is pancyclic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源