论文标题

降低布朗噪音:最大化隐私受到准确限制

Brownian Noise Reduction: Maximizing Privacy Subject to Accuracy Constraints

论文作者

Whitehouse, Justin, Wu, Zhiwei Steven, Ramdas, Aaditya, Rogers, Ryan

论文摘要

研究人员和从业人员如何处理隐私 - 实用性权衡之间存在脱节。研究人员主要是从隐私的第一角度运作,设定严格的隐私要求并最大程度地限制受这些限制的风险。从业人员通常希望获得准确的第一视角,可能会对他们可能获得足够小的错误的最大隐私感到满意。 Ligett等。已经引入了一种“降噪”算法来解决后一种观点。作者表明,通过添加相关的拉普拉斯噪声并逐渐减少它,可以产生一系列越来越准确的私人参数估计,而仅以最低噪声介绍的方式支付隐私成本。在这项工作中,我们将噪声降低概括为高斯噪声的设置,并引入了布朗机构。布朗机制首先添加与模拟布朗运动的最后点相对应的高方差的高斯噪声。然后,根据从业人员的酌情决定权,通过沿着布朗式的路径追溯到更早的时间来逐渐降低噪音。我们的机制更自然地适用于有限的$ \ ell_2 $ - 敏感性的共同设置,从经验上优于公共统计任务上的现有工作,并在与从业者的整个交互中提供了对隐私损失的可自定义控制。我们通过简化的Brownian机制来补充我们的Brownian机制,该机制是对提供自适应隐私保证的古典Abovethreshold算法的概括。总体而言,我们的结果表明,人们可以达到公用事业的限制,同时仍保持强大的隐私水平。

There is a disconnect between how researchers and practitioners handle privacy-utility tradeoffs. Researchers primarily operate from a privacy first perspective, setting strict privacy requirements and minimizing risk subject to these constraints. Practitioners often desire an accuracy first perspective, possibly satisfied with the greatest privacy they can get subject to obtaining sufficiently small error. Ligett et al. have introduced a "noise reduction" algorithm to address the latter perspective. The authors show that by adding correlated Laplace noise and progressively reducing it on demand, it is possible to produce a sequence of increasingly accurate estimates of a private parameter while only paying a privacy cost for the least noisy iterate released. In this work, we generalize noise reduction to the setting of Gaussian noise, introducing the Brownian mechanism. The Brownian mechanism works by first adding Gaussian noise of high variance corresponding to the final point of a simulated Brownian motion. Then, at the practitioner's discretion, noise is gradually decreased by tracing back along the Brownian path to an earlier time. Our mechanism is more naturally applicable to the common setting of bounded $\ell_2$-sensitivity, empirically outperforms existing work on common statistical tasks, and provides customizable control of privacy loss over the entire interaction with the practitioner. We complement our Brownian mechanism with ReducedAboveThreshold, a generalization of the classical AboveThreshold algorithm that provides adaptive privacy guarantees. Overall, our results demonstrate that one can meet utility constraints while still maintaining strong levels of privacy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源