论文标题

对基于感知的控制系统的攻击:建模和基本限制

Attacks on Perception-Based Control Systems: Modeling and Fundamental Limits

论文作者

Khazraei, Amir, Pfister, Henry, Pajic, Miroslav

论文摘要

我们研究了在攻击存在下基于感知的控制系统的性能,并提供了对其对基于身体和感知感应的隐身攻击进行建模和分析的方法。具体而言,我们考虑使用具有基于感知的控制器控制的非线性仿射物理植物的一般设置,该植物映射了物理(例如IMU)和感知(例如,相机)传感到控制输入;该系统还配备了基于统计或学习的异常检测器(AD)。我们以最通用的形式对攻击进行建模,并独立于使用的AD引入攻击效率和隐身性的概念。在这种情况下,我们考虑具有有关植物的运行时知识不同的攻击。我们发现存在有效的有效攻击的足够条件,这些攻击迫使植物进入不安全的区域,而没有任何AD检测到。我们表明,随着开环不稳定的植物动力学差异更快,闭环系统会收敛到平衡点,因此该系统更容易受到有效的隐身攻击的影响。同样,根据攻击者可用的运行时信息,如果攻击者对工厂状态的估计是任意接近的,则可以任意接近攻击的可能性。当无法获得植物状态的准确估计值时,隐身性水平取决于无攻击操作中的控制性能。

We study the performance of perception-based control systems in the presence of attacks, and provide methods for modeling and analysis of their resiliency to stealthy attacks on both physical and perception-based sensing. Specifically, we consider a general setup with a nonlinear affine physical plant controlled with a perception-based controller that maps both the physical (e.g., IMUs) and perceptual (e.g., camera) sensing to the control input; the system is also equipped with a statistical or learning-based anomaly detector (AD). We model the attacks in the most general form, and introduce the notions of attack effectiveness and stealthiness independent of the used AD. In such setting, we consider attacks with different levels of runtime knowledge about the plant. We find sufficient conditions for existence of stealthy effective attacks that force the plant into an unsafe region without being detected by any AD. We show that as the open-loop unstable plant dynamics diverges faster and the closed-loop system converges faster to an equilibrium point, the system is more vulnerable to effective stealthy attacks. Also, depending on runtime information available to the attacker, the probability of attack remaining stealthy can be arbitrarily close to one, if the attacker's estimate of the plant's state is arbitrarily close to the true state; when an accurate estimate of the plant state is not available, the stealthiness level depends on the control performance in attack-free operation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源