论文标题
图像重建算法的稳定性
Stability of Image-Reconstruction Algorithms
论文作者
论文摘要
图像重建算法的鲁棒性和稳定性最近受到了审查。它们对医学成像的重要性不能被夸大。我们回顾了已知的局部变化正则化策略($ \ ell_2 $和$ \ ell_1 $正则化)的已知结果,并为$ \ ell_p $ regull_p $的新型稳定性结果($ p \ in(1,\ infty)$)的新型稳定性结果。我们的结果确保Lipschitz的小$ P $和较大$ P $的Hölder连续性的连续性。它们可以很好地概括到$ L_P(ω)$功能空间。
Robustness and stability of image-reconstruction algorithms have recently come under scrutiny. Their importance to medical imaging cannot be overstated. We review the known results for the topical variational regularization strategies ($\ell_2$ and $\ell_1$ regularization) and present novel stability results for $\ell_p$-regularized linear inverse problems for $p\in(1,\infty)$. Our results guarantee Lipschitz continuity for small $p$ and Hölder continuity for larger $p$. They generalize well to the $L_p(Ω)$ function spaces.