论文标题

紧密结合的台球

Tight-binding billiards

论文作者

Ulčakar, Iris, Vidmar, Lev

论文摘要

最近的工作已经建立了通用的纠缠特性,并证明了单粒子本征态热化对量子 - 偶然二次二次汉密尔顿人的有效性。但是,到目前为止,在这种情况下研究的所有量子 - 偶然二次汉顿人的共同特性是存在的随机术语,这些术语是一种疾病来源。在这里,我们在两个维度上引入了紧密结合的台球,这些台球是通过在无序的无疾病方格上进行的无旋转费用来描述的。我们表明,紧密结合台球的许多特性与量子 - 偶然二次汉密尔顿人的特性相匹配:多体征本特征状态的平均纠缠侵入率接近随机矩阵理论预测和单体性观察物中的单体性特征性特征性的单物体特征性特征性特征性特征素体热稳定性。另一方面,以零能量(即零模式)为零的单粒子本征态的退化子集被描述为手性颗粒,其波形局限于均匀的一种。

Recent works have established universal entanglement properties and demonstrated validity of single-particle eigenstate thermalization in quantum-chaotic quadratic Hamiltonians. However, a common property of all quantum-chaotic quadratic Hamiltonians studied in this context so far is the presence of random terms that act as a source of disorder. Here we introduce tight-binding billiards in two dimensions, which are described by non-interacting spinless fermions on a disorder-free square lattice subject to curved open (hard-wall) boundaries. We show that many properties of tight-binding billiards match those of quantum-chaotic quadratic Hamiltonians: the average entanglement entropy of many-body eigenstates approaches the random matrix theory predictions and one-body observables in single-particle eigenstates obey the single-particle eigenstate thermalization hypothesis. On the other hand, a degenerate subset of single-particle eigenstates at zero energy (i.e., the zero modes) can be described as chiral particles whose wavefunctions are confined to one of the sublattices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源