论文标题
Kagome晶格上的角落和Sublattice敏感的Majora零模式
Corner- and sublattice-sensitive Majorana zero modes on the kagome lattice
论文作者
论文摘要
在具有自由度的一阶拓扑阶段中,边界sublattice终止的变化对高于一个的维度的无间隙边界状态没有影响。但是,这种变化可能会强烈影响这些边界状态的物理特性。在这一观察过程中,我们进行了系统的研究,对sublattice终止对边界物理学对二维Kagome晶格的影响。我们发现,在二维一阶拓扑kagome绝缘子中,螺旋边缘状态的狄拉克点的能量敏感地取决于边缘的终止sublattices。值得注意的是,该属性承认实现了时间反向不变的二阶拓扑超导阶段,而高度可控的Majorana Kramers在角落和Sublattice域壁上,通过将拓扑Kagome绝缘子放置在$ D $ - d $ - $ d $ - 波动超管器中。此外,将$ d $ - 波超导体用常规的$ s $ - 波超导体代替,我们发现如果另外应用了平面齐曼领域,也可以在Corners和Sublattice域壁上实现高度可控的Majorana零模式。我们的研究揭示了实施高度可控的Majorana零模式的有希望的平台。
In a first-order topological phase with sublattice degrees of freedom, a change in the boundary sublattice termination has no effect on the existence of gapless boundary states in dimensions higher than one. However, such a change may strongly affect the physical properties of those boundary states. Motivated by this observation, we perform a systematic study of the impact of sublattice terminations on the boundary physics on the two-dimensional kagome lattice. We find that the energies of the Dirac points of helical edge states in two-dimensional first-order topological kagome insulators sensitively depend on the terminating sublattices at the edge. Remarkably, this property admits the realization of a time-reversal invariant second-order topological superconducting phase with highly controllable Majorana Kramers pairs at the corners and sublattice domain walls by putting the topological kagome insulator in proximity to a $d$-wave superconductor. Moreover, substituting the $d$-wave superconductor with a conventional $s$-wave superconductor, we find that highly controllable Majorana zero modes can also be realized at the corners and sublattice domain walls if an in-plane Zeeman field is additionally applied. Our study reveals promising platforms to implement highly controllable Majorana zero modes.