论文标题

文本编辑模型的文本生成

Text Generation with Text-Editing Models

论文作者

Malmi, Eric, Dong, Yue, Mallinson, Jonathan, Chuklin, Aleksandr, Adamek, Jakub, Mirylenka, Daniil, Stahlberg, Felix, Krause, Sebastian, Kumar, Shankar, Severyn, Aliaksei

论文摘要

文本编辑模型最近已成为单语文本生成任务(例如语法误差校正,简化和样式传输)的SEQ2SEQ模型的突出替代方法。这些任务具有共同的特征 - 它们在源文本和目标文本之间表现出大量的文本重叠。文本编辑模型利用了此观察结果,并通过预测应用于源序列的编辑操作来学会生成输出。相比之下,Seq2Seq模型从头开始生成逐字输出,从而使它们在推理时间缓慢。与SEQ2SEQ模型相比,文本编辑模型提供了多个好处,包括更快的推理速度,更高的样本效率以及对输出的更好的控制和解释性。本教程提供了有关文本编辑模型和当前最新方法的全面概述,并分析了他们的利弊。我们讨论了与生产化有关的挑战,以及如何使用这些模型来减轻幻觉和偏见,这两者都在文本生成领域遇到了紧迫的挑战。

Text-editing models have recently become a prominent alternative to seq2seq models for monolingual text-generation tasks such as grammatical error correction, simplification, and style transfer. These tasks share a common trait - they exhibit a large amount of textual overlap between the source and target texts. Text-editing models take advantage of this observation and learn to generate the output by predicting edit operations applied to the source sequence. In contrast, seq2seq models generate outputs word-by-word from scratch thus making them slow at inference time. Text-editing models provide several benefits over seq2seq models including faster inference speed, higher sample efficiency, and better control and interpretability of the outputs. This tutorial provides a comprehensive overview of text-editing models and current state-of-the-art approaches, and analyzes their pros and cons. We discuss challenges related to productionization and how these models can be used to mitigate hallucination and bias, both pressing challenges in the field of text generation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源