论文标题

原子氢的光学减速

Optical deceleration of atomic hydrogen

论文作者

Cooper, S. F., Rasor, C., Bullis, R. G., Brandt, A. D., Yost, D. C.

论文摘要

高精度氢光谱是一个活性场,有助于确定Rydberg常数和质子电荷半径,测试结合状态QED,并可以搜索超出标准模型(BSM)物理学。此外,通过最近的抗氢捕获和光谱法的证明,可以将新的研究线与氢与其反物质对应物进行比较。下一代精确的氢光谱可能需要对原子样品进行额外的运动控制 - 类似于较重的元素。不幸的是,由于所需的真空紫外线辐射,激光冷却 - 现代精确原子物理学的基石之一 - 在氢气中很难。在这里,我们避开了激光冷却中固有的挑战,并演示了一种技术,通过该技术,我们从低温光束中加载了亚稳定原子到运动的光学晶格,减速晶格并观察到原子的相应减速。由于光学晶格受标准光电子的控制,因此该技术代表了氢的运动控制的强大平台。我们的技术可以在氢光谱中提高精确度,并将其转移到外来的简单原子,例如抗氢化原子。

High-precision hydrogen spectroscopy is an active field which helps to determine the Rydberg constant and proton charge radius, tests bound-state QED, and can search for Beyond Standard Model (BSM) Physics. Additionally, with recent demonstrations of anti-hydrogen trapping and spectroscopy, a new line of investigation is possible whereby hydrogen can be compared to its antimatter counterpart. The next generation of precision hydrogen spectroscopy will likely require additional motional control of the atomic sample - similar to what is possible with heavier elements. Unfortunately, laser cooling - one of the cornerstones of modern precision atomic physics - is difficult in hydrogen due to the vacuum ultraviolet radiation required. Here, we sidestep the challenges inherent in laser cooling and demonstrate a technique whereby we load metastable atoms from a cryogenic beam into a moving optical lattice, decelerate the lattice, and observe a commensurate deceleration of the atoms. Since the optical lattice is governed by standard optoelectronics, this technique represents a robust platform for the motional control of hydrogen. Our technique could enable greater precision in hydrogen spectroscopy and be transferred to exotic simple atoms such as antihydrogen.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源