论文标题

寻找公平的一对一比赛的复杂性

The Complexity of Finding Fair Many-to-One Matchings

论文作者

Boehmer, Niclas, Koana, Tomohiro

论文摘要

我们分析了双方匹配的“公平”变体的(参数化)计算复杂性,其中“左”侧的每个顶点与一个顶点完全匹配,而“右”侧面的每个顶点都可以匹配到多个顶点。我们想找到一个“公平”的匹配,其中右侧的每个顶点与“公平”的顶点匹配。假设左侧的每个顶点都有一种颜色建模其属性,我们研究两个公平标准。在其中一个中,我们认为一个顶点集合,如果对于任何两种颜色,其出现数量之间的差异不超过给定的阈值。当学生和大学,选民和选区以及申请人和公司之间找到多对色的比赛时,公平是重要的。在这里,颜色可以分别建模社会人口统计学属性,党派成员资格和资格。我们表明,即使在三种颜色和最高学位的最高学位上,找到一个公平的一对一匹配也是NP的匹配。我们的主要贡献是设计固定参数可拖动算法相对于右侧的顶点数量的设计。我们的算法利用包括颜色编码在内的各种技术。在核心谎言中,整数线性程序像条件一样编码大厅。为了确定整数程序的正确性,我们证明了一个新的分离结果,灵感来自弗兰克的分离定理[弗兰克,离散数学。 1982],这也可能具有独立的利益。我们进一步获得有关颜色数量和每一侧的最大程度的完整复杂性二分法。

We analyze the (parameterized) computational complexity of "fair" variants of bipartite many-to-one matching, where each vertex from the "left" side is matched to exactly one vertex and each vertex from the "right" side may be matched to multiple vertices. We want to find a "fair" matching, in which each vertex from the right side is matched to a "fair" set of vertices. Assuming that each vertex from the left side has one color modeling its attribute, we study two fairness criteria. In one of them, we deem a vertex set fair if for any two colors, the difference between the numbers of their occurrences does not exceed a given threshold. Fairness is relevant when finding many-to-one matchings between students and colleges, voters and constituencies, and applicants and firms. Here colors may model sociodemographic attributes, party memberships, and qualifications, respectively. We show that finding a fair many-to-one matching is NP-hard even for three colors and maximum degree five. Our main contribution is the design of fixed-parameter tractable algorithms with respect to the number of vertices on the right side. Our algorithms make use of a variety of techniques including color coding. At the core lie integer linear programs encoding Hall like conditions. To establish the correctness of our integer programs, we prove a new separation result, inspired by Frank's separation theorem [Frank, Discrete Math. 1982], which may also be of independent interest. We further obtain complete complexity dichotomies regarding the number of colors and the maximum degree of each side.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源