论文标题

对设备到设备通信的最新技术的调查:资源分配的观点

Survey on the State-of-the-Art in Device-to-Device Communication: A Resource Allocation Perspective

论文作者

Islam, Tariq, Kwon, Cheolhyeon

论文摘要

设备到设备(D2D)通信的设备利用了通信设备之间的接近度,以实现有效的资源利用,提高吞吐量和能源效率,同时提供可用性和延迟。 D2D通信的主要特征之一是重复使用频率资源,以提高系统的光谱效率。然而,频率重复使用引入了显着高的干扰水平,因此需要有效的资源分配算法,这些算法可以通过有效的渠道和/或电力分配来同时进行通信会话。本调查论文介绍了D2D通信中最新资源分配算法的全面调查。根据异质参数构成了D2D范式中资源分配算法的基本特征,对被调查的算法进行了评估。此外,为了使读者熟悉调查资源分配算法的基本设计,简要说明了每种算法的操作方式。根据其技术学说,即基于传统优化的,基于游戏理论的基于游戏理论和基于机器学习的技术,被调查算法分为四类。最后,一些公开挑战被认为是D2D通信资源分配的未来研究方向。

Device to Device (D2D) communication takes advantage of the proximity between the communicating devices in order to achieve efficient resource utilization, improved throughput and energy efficiency, simultaneous serviceability and reduced latency. One of the main characteristics of D2D communication is reuse of the frequency resource in order to improve spectral efficiency of the system. Nevertheless, frequency reuse introduces significantly high interference levels thus necessitating efficient resource allocation algorithms that can enable simultaneous communication sessions through effective channel and/or power allocation. This survey paper presents a comprehensive investigation of the state-of-the-art resource allocation algorithms in D2D communication underlaying cellular networks. The surveyed algorithms are evaluated based on heterogeneous parameters which constitute the elementary features of a resource allocation algorithm in D2D paradigm. Additionally, in order to familiarize the readers with the basic design of the surveyed resource allocation algorithms, brief description of the mode of operation of each algorithm is presented. The surveyed algorithms are divided into four categories based on their technical doctrine i.e., conventional optimization based, Non-Orthogonal-Multiple-Access (NOMA) based, game theory based and machine learning based techniques. Towards the end, several open challenges are remarked as the future research directions in resource allocation for D2D communication.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源