论文标题

树木的最大线性布置问题在投影性和平面性下

The Maximum Linear Arrangement Problem for trees under projectivity and planarity

论文作者

Alemany-Puig, Lluís, Esteban, Juan Luis, Ferrer-i-Cancho, Ramon

论文摘要

线性布置是从图$ g $的$ n $顶点到$ n $连续整数的映射$π$。线性排列可以通过沿水平线绘制顶点并将边缘绘制为上述线的半圆来表示。在这种情况下,边缘的长度定义为其两个顶点的位置之间差的绝对值,而布置的成本为所有边缘长度的总和。在这里,我们研究了最大线性排列问题(MAXLA)的两个变体,其中包括找到最大化成本的布置。在自由树的平面变体中,必须以没有边缘交叉的方式排列顶点。在植根树的投影变体中,布置必须是平面,并且树的根不能被任何边缘覆盖。在本文中,我们介绍了在时间和空间上线性的算法,以求解树木的平面和射击maxla。我们还证明了最大投影和平面布置的几种特性,并表明毛毛虫树在固定尺寸的所有树上最大化平面最大化,从而在树上概括了以前的极端结果。

A linear arrangement is a mapping $π$ from the $n$ vertices of a graph $G$ to $n$ distinct consecutive integers. Linear arrangements can be represented by drawing the vertices along a horizontal line and drawing the edges as semicircles above said line. In this setting, the length of an edge is defined as the absolute value of the difference between the positions of its two vertices in the arrangement, and the cost of an arrangement as the sum of all edge lengths. Here we study two variants of the Maximum Linear Arrangement problem (MaxLA), which consists of finding an arrangement that maximizes the cost. In the planar variant for free trees, vertices have to be arranged in such a way that there are no edge crossings. In the projective variant for rooted trees, arrangements have to be planar and the root of the tree cannot be covered by any edge. In this paper we present algorithms that are linear in time and space to solve planar and projective MaxLA for trees. We also prove several properties of maximum projective and planar arrangements, and show that caterpillar trees maximize planar MaxLA over all trees of a fixed size thereby generalizing a previous extremal result on trees.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源