论文标题

使用贝叶斯高斯混合物模型对公共汽车旅行时间的概率预测

Probabilistic forecasting of bus travel time with a Bayesian Gaussian mixture model

论文作者

Chen, Xiaoxu, Cheng, Zhanhong, Jin, Jian Gang, Trepanier, Martin, Sun, Lijun

论文摘要

准确预测公交旅行时间及其不确定性对于运输系统的服务质量和运行至关重要;例如,它可以帮助乘客在出发时间,路线选择甚至运输模式选择方面做出更好的决定,并支持运输运营商对诸如机组/车辆计划和时间表等任务做出明智的决定。但是,大多数现有的公交旅行时间预测中现有方法都是基于仅提供点估计的确定性模型。为此,我们在本文中开发了公交旅行时间的贝叶斯概率预测模型。为了表征连续总线之间的强依赖性/相互作用,我们将链接旅行时间向量和从两个相邻总线作为新的增强变量的链路旅行时间向量和前进向量加以串联,并用约束的多元高斯混合物分布对其进行建模。这种方法自然可以捕获相邻总线之间的相互作用(例如,相关速度和前进的平稳变化),处理数据中的缺失值,并描述了总线旅行时间分布中的多模式。接下来,我们在一天中假设不同的时期共享相同的高斯组件,但混合系数不同,以表征总线运行中系统的时间变化。对于模型推断,我们开发了有效的马尔可夫链蒙特卡洛(MCMC)采样算法,以获得模型参数的后验分布并进行概率预测。我们使用来自中国广州二十链接巴士路线的数据测试了提出的模型。结果表明,我们的方法大大优于基线模型,这些模型忽略了总线到公交车相互作用,从预测手段和分布方面。除了预测,所提出的模型的参数还包含丰富的信息,以理解/改进总线服务。

Accurate forecasting of bus travel time and its uncertainty is critical to service quality and operation of transit systems; for example, it can help passengers make better decisions on departure time, route choice, and even transport mode choice and also support transit operators to make informed decisions on tasks such as crew/vehicle scheduling and timetabling. However, most existing approaches in bus travel time forecasting are based on deterministic models that provide only point estimation. To this end, we develop in this paper a Bayesian probabilistic forecasting model for bus travel time. To characterize the strong dependencies/interactions between consecutive buses, we concatenate the link travel time vectors and the headway vector from a pair of two adjacent buses as a new augmented variable and model it with a constrained Multivariate Gaussian mixture distributions. This approach can naturally capture the interactions between adjacent buses (e.g., correlated speed and smooth variation of headway), handle missing values in data, and depict the multimodality in bus travel time distributions. Next, we assume different periods in a day share the same set of Gaussian components but different mixing coefficients to characterize the systematic temporal variations in bus operation. For model inference, we develop an efficient Markov chain Monte Carlo (MCMC) sampling algorithm to obtain the posterior distributions of model parameters and make probabilistic forecasting. We test the proposed model using the data from a twenty-link bus route in Guangzhou, China. Results show our approach significantly outperforms baseline models that overlook bus-to-bus interactions in terms of both predictive means and distributions. Besides forecasting, the parameters of the proposed model contain rich information for understanding/improving the bus service.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源