论文标题
多动运动综合的循环变压器变化自动编码器
Recurrent Transformer Variational Autoencoders for Multi-Action Motion Synthesis
论文作者
论文摘要
我们考虑合成任意长度的多动运动人体运动序列的问题。现有方法已经在单个动作方案中掌握了运动序列的生成,但未能推广到多动作和任意长度序列。我们通过提出一种新的有效方法来填补这一空白,该方法利用了经常性变压器的表现力和条件变分自动编码器的生成丰富性。所提出的迭代方法能够在线性空间和时间进行任意数量的动作和帧中生成平滑而逼真的人类运动序列。我们在Prox和Charades数据集上训练并评估拟议的方法,在该方法中,我们可以使用地面行动标签和带有人类网格注释的Charades来增强Prox。实验评估表明,与最先进的情况相比,FID得分和语义一致性指标的显着改善。
We consider the problem of synthesizing multi-action human motion sequences of arbitrary lengths. Existing approaches have mastered motion sequence generation in single action scenarios, but fail to generalize to multi-action and arbitrary-length sequences. We fill this gap by proposing a novel efficient approach that leverages expressiveness of Recurrent Transformers and generative richness of conditional Variational Autoencoders. The proposed iterative approach is able to generate smooth and realistic human motion sequences with an arbitrary number of actions and frames while doing so in linear space and time. We train and evaluate the proposed approach on PROX and Charades datasets, where we augment PROX with ground-truth action labels and Charades with human mesh annotations. Experimental evaluation shows significant improvements in FID score and semantic consistency metrics compared to the state-of-the-art.