论文标题

CVR-LSE:无人接地车辆本地静态环境的紧凑型矢量化表示

CVR-LSE: Compact Vectorization Representation of Local Static Environments for Unmanned Ground Vehicles

论文作者

Gao, Haiming, Qiu, Qibo, Hua, Wei, Zhang, Xuebo, Han, Zhengyong, Zhang, Shun

论文摘要

根据一般静态障碍物检测的要求,本文提出了无人接地车的局部静态环境的紧凑型矢量化表示方法。首先,通过融合LiDAR和IMU的数据,获得了高频姿势信息。然后,通过二维(2D)障碍物生成,提出了具有固定尺寸的网格图维护过程。最后,通过多个凸多边形描述了局部静态环境,该多边形实现了基于双阈值的边界简化和凸多边形分割。我们提出的方法已应用于公园的一个实用无人驾驶项目中,典型场景的定性实验结果验证了有效性和鲁棒性。此外,定量评估表明,与传统的基于网格地图的方法相比,使用较少的点信息(减少约60%)来代表局部静态环境。此外,运行时间(15ms)的性能表明,所提出的方法可用于实时局部静态环境感知。可以在https://github.com/ghm0819/cvr_lse上访问相应的代码。

According to the requirement of general static obstacle detection, this paper proposes a compact vectorization representation approach of local static environments for unmanned ground vehicles. At first, by fusing the data of LiDAR and IMU, high-frequency pose information is obtained. Then, through the two-dimensional (2D) obstacle points generation, the process of grid map maintenance with a fixed size is proposed. Finally, the local static environment is described via multiple convex polygons, which is realized throungh the double threshold-based boundary simplification and the convex polygon segmentation. Our proposed approach has been applied in a practical driverless project in the park, and the qualitative experimental results on typical scenes verify the effectiveness and robustness. In addition, the quantitative evaluation shows the superior performance on making use of fewer number of points information (decreased by about 60%) to represent the local static environment compared with the traditional grid map-based methods. Furthermore, the performance of running time (15ms) shows that the proposed approach can be used for real-time local static environment perception. The corresponding code can be accessed at https://github.com/ghm0819/cvr_lse.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源