论文标题
贝叶斯通道估计智能反射表面辅助的MMWave巨大的MIMO系统,具有半准元素
Bayesian Channel Estimation for Intelligent Reflecting Surface-Aided mmWave Massive MIMO Systems With Semi-Passive Elements
论文作者
论文摘要
在本文中,我们提出了一个贝叶斯通道估计器,用于智能反射表面辅助(IRS辅助)毫米波(MMWave)的大量多输入多输出(MIMO)系统,其半准元素可以在活动感测模式下接收信号。最终,我们的目标是使用基本站的接收信号以及从IRS的少量活动传感器获得的其他信息最大程度地减少通道估计误差。与最近有关半通信元素的频道估计的工作不同,这些元素需要上行链路和下行链接训练信号来估计UE-IRS和IRS-BBS链接,我们只使用上链接培训信号来估算所有链接。为了计算所有链接的最小平方误差(MMSE)估计值,我们提出了一种新型的变异推理 - 帕斯斯贝叶斯学习(VI-SBL)通道估计器,该估计器在SBL框架下使用暗线段近似的VI对通道上的VI进行近似后验推理。仿真结果表明,VI-SBL的表现优于IRS的最新基线,其在渠道估计准确性和训练开销方面具有被动反射元素。此外,与具有被动反射元件的基准相比,具有半passive元件的VI-SBL比基线更频谱和节能。
In this paper, we propose a Bayesian channel estimator for intelligent reflecting surface-aided (IRS-aided) millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems with semi-passive elements that can receive the signal in the active sensing mode. Ultimately, our goal is to minimize the channel estimation error using the received signal at the base station and additional information acquired from a small number of active sensors at the IRS. Unlike recent works on channel estimation with semi-passive elements that require both uplink and downlink training signals to estimate the UE-IRS and IRS-BS links, we only use uplink training signals to estimate all the links. To compute the minimum mean squared error (MMSE) estimates of all the links, we propose a novel variational inference-sparse Bayesian learning (VI-SBL) channel estimator that performs approximate posterior inference on the channel using VI with the mean-field approximation under the SBL framework. The simulation results show that VI-SBL outperforms the state-of-the-art baselines for IRS with passive reflecting elements in terms of the channel estimation accuracy and training overhead. Furthermore, VI-SBL with semi-passive elements is shown to be more spectral- and energy-efficient than the baselines with passive reflecting elements.