论文标题
球campanato型功能空间的分数积分的界限
Boundedness of Fractional Integrals on Ball Campanato-Type Function Spaces
论文作者
论文摘要
令$ x $为$ {\ mathbb r}^n $满足某些温和假设的$ {\ mathbb r}^n $上的球$α\ in(0,n)$和$β\ in(1,\ infty)$。在本文中,当$α\ in(0,1)$中时,作者首先找到了一个合理的版本$ \ widetilde {i}_α$的分数积分$i_α$在球campanato-type type函数$ \ MATHCAL {LATCAL型函数$ \ MATHCAL {l} _ $ q \ in [1,\ infty)$,$ s \ in \ mathbb {z} _+^n $和$ d \ in(0,\ infty)$。然后,作者证明了$ \ widetilde {i}_α$从$ \ nathcal {l} _ {x^β,q,q,s,d}(\ m athbb {r}^n)$到$ \ \ \ \ \ m natercal {L}常数$ c $使得,对于任何球$ b \ subset \ mathbb {r}^n $,$ | b |^{\fracα{n}} \ leq c \ | \ | \ mathbf {1} _b \ \ | _x^^{\ frac {\ frac {β-β-1bivile $ x $。此外,作者将$α\ in(0,1)$ in $ \ widetilde {i}_α$扩展到(0,1)$ in(0,1)$ in(0,n)$,并在这种情况下也获得相应的界限。此外,事实证明,$ \ widetilde {i}_α$是$i_α$的伴随运营商。所有这些结果都有广泛的应用。特别是,即使分别将它们应用于莫里空间,混合 - 勒布斯格空间,局部概括的HERZ空间和混合 - 纳尔兹HERZ空间,所有获得的结果都是新的。这些结果的证据在很大程度上取决于$ \ MATHCAL {l} _ {x,q,q,s,d}(\ Mathbb {r}^n)$,以及$ h_x的分子的特殊原子分解(\ nathbb {r}^n)$(r}^n)$($ h_x $),该$(r}^n)$($) $ \ MATHCAL {L} _ {X,Q,S,D}(\ Mathbb {r}^n)$。
Let $X$ be a ball quasi-Banach function space on ${\mathbb R}^n$ satisfying some mild assumptions and let $α\in(0,n)$ and $β\in(1,\infty)$. In this article, when $α\in(0,1)$, the authors first find a reasonable version $\widetilde{I}_α$ of the fractional integral $I_α$ on the ball Campanato-type function space $\mathcal{L}_{X,q,s,d}(\mathbb{R}^n)$ with $q\in[1,\infty)$, $s\in\mathbb{Z}_+^n$, and $d\in(0,\infty)$. Then the authors prove that $\widetilde{I}_α$ is bounded from $\mathcal{L}_{X^β,q,s,d}(\mathbb{R}^n)$ to $\mathcal{L}_{X,q,s,d}(\mathbb{R}^n)$ if and only if there exists a positive constant $C$ such that, for any ball $B\subset \mathbb{R}^n$, $|B|^{\fracα{n}}\leq C \|\mathbf{1}_B\|_X^{\frac{β-1}β}$, where $X^β$ denotes the $β$-convexification of $X$. Furthermore, the authors extend the range $α\in(0,1)$ in $\widetilde{I}_α$ to the range $α\in(0,n)$ and also obtain the corresponding boundedness in this case. Moreover, $\widetilde{I}_α$ is proved to be the adjoint operator of $I_α$. All these results have a wide range of applications. Particularly, even when they are applied, respectively, to Morrey spaces, mixed-norm Lebesgue spaces, local generalized Herz spaces, and mixed-norm Herz spaces, all the obtained results are new. The proofs of these results strongly depend on the dual theorem on $\mathcal{L}_{X,q,s,d}(\mathbb{R}^n)$ and also on the special atomic decomposition of molecules of $H_X(\mathbb{R}^n)$ (the Hardy-type space associated with $X$) which proves the predual space of $\mathcal{L}_{X,q,s,d}(\mathbb{R}^n)$.