论文标题
SN 2019zrk,一个明亮的SN 2009ip类似物,带有前体
SN 2019zrk, a bright SN 2009ip analog with a precursor
论文作者
论文摘要
我们介绍了IIN Supernova SN 2019ZRK(也称为ZTF20AACBYEC)的光度法和光谱观察结果。 SN显示了$ \ gtrsim $ 100天的前体,其较慢上升,然后在$ r $和$ g $ bands中迅速上升至m $ \ sim -19.2 $。峰后的光曲线下降非常适合指数衰减,时间尺寸为$ \ sim 39美元,但显示出突出的起伏,幅度为$ \ sim 1 $ mag。光曲线和光谱都由与以前的质量弹出相互作用(CSM)的相互作用来支配。光谱从散射为主的IIN频谱演变为具有强P-Cygni吸收的光谱。膨胀速度很高,即使在最后一个光谱中,$ \ sim 16,000 $ km s $^{ - 1} $也是如此。主要喷发后的最后一个光谱$ \ sim 110 $几天没有显示出晚期核合成的证据。从对光谱和光曲线的分析中,我们估计质量损失的速率为$ \ sim 4 \ times 10^{ - 2} $ m $ _ \ odot $ yr $ yr $^{ - 1} $,对于100 km s $ s $ s $ s $^{ - 1} $的CSM速度,以及$ \ gtrsim $ $ $ $ $ $ $ $ $ $ $。我们发现与SN 2009IP和类似SNE的前体,一般光曲线和光谱演化相似,尽管SN 2019ZRK显示出更明亮的峰值幅度。讨论了基于脉冲对不稳定性喷发,波加热和合并的09IP级SNE性质的不同情况。 }
We present photometric and spectroscopic observations of the Type IIn supernova SN 2019zrk (also known as ZTF20aacbyec). The SN shows a $\gtrsim$ 100 day precursor, with a slow rise, followed by a rapid rise to M $\sim -19.2$ in the $r$ and $g$ bands. The post-peak light-curve decline is well fit with an exponential decay with a timescale of $\sim 39$ days, but it shows prominent undulations, with an amplitude of $\sim 1$ mag. Both the light curve and spectra are dominated by an interaction with a dense circumstellar medium (CSM), probably from previous mass ejections. The spectra evolve from a scattering-dominated Type IIn spectrum to a spectrum with strong P-Cygni absorptions. The expansion velocity is high, $\sim 16,000$ km s$^{-1}$, even in the last spectra. The last spectrum $\sim 110$ days after the main eruption reveals no evidence for advanced nucleosynthesis. From analysis of the spectra and light curves, we estimate the mass-loss rate to be $\sim 4 \times 10^{-2}$ M$_\odot$ yr$^{-1}$ for a CSM velocity of 100 km s$^{-1}$, and a CSM mass of $\gtrsim 1$ M$_\odot$. We find strong similarities for both the precursor, general light curve, and spectral evolution with SN 2009ip and similar SNe, although SN 2019zrk displays a brighter peak magnitude. Different scenarios for the nature of the 09ip-class of SNe, based on pulsational pair instability eruptions, wave heating, and mergers, are discussed. }