论文标题

使用剥落在不同的图像分辨率上拟合分割网络

Fitting Segmentation Networks on Varying Image Resolutions using Splatting

论文作者

Brudfors, Mikael, Balbastre, Yael, Ashburner, John, Rees, Geraint, Nachev, Parashkev, Ourselin, Sebastien, Cardoso, M. Jorge

论文摘要

图像分割中使用的数据并不总是在同一网格上定义。对于医学图像尤其如此,在这种医学图像中,分辨率,视野和方向在各个渠道和受试者之间可能会有所不同。因此,作为预处理步骤,图像和标签通常被重新采样到相同的网格上。但是,重采样操作引入了部分体积效应和模糊,从而改变了有效的分辨率并减少了结构之间的对比度。在本文中,我们提出了一个SPLAT层,该层自动处理输入数据中的分辨率不匹配。该层将每个图像推向执行前向通行证的平均空间。由于SPLAT运算符是重采样运算符的伴随,因此可以将平均空间预测拉回到计算损耗函数的本机标签空间。因此,消除了使用插值进行明确分辨率调整的需求。我们在两个公开可用的数据集上显示,具有模拟和真实的多模式磁共振图像,该模型与作为预处理步骤进行重新采样相比改善了分割结果。

Data used in image segmentation are not always defined on the same grid. This is particularly true for medical images, where the resolution, field-of-view and orientation can differ across channels and subjects. Images and labels are therefore commonly resampled onto the same grid, as a pre-processing step. However, the resampling operation introduces partial volume effects and blurring, thereby changing the effective resolution and reducing the contrast between structures. In this paper we propose a splat layer, which automatically handles resolution mismatches in the input data. This layer pushes each image onto a mean space where the forward pass is performed. As the splat operator is the adjoint to the resampling operator, the mean-space prediction can be pulled back to the native label space, where the loss function is computed. Thus, the need for explicit resolution adjustment using interpolation is removed. We show on two publicly available datasets, with simulated and real multi-modal magnetic resonance images, that this model improves segmentation results compared to resampling as a pre-processing step.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源